

Atividade óptica

ROTAÇÃO DO NÍVEL DE POLARIZAÇÃO ATRAVÉS DE SOLUÇÕES DE AÇÚCAR.

- Medir o ângulo de rotação em dependência do comprimento da amostra.
- Medir o ângulo de rotação em dependência da concentração de massa.
- Determinação do ângulo de rotação especifico em dependência do comprimento de onda.
- Comparação da direção de virada e do ângulo de rotação da frutose, glicose e sacarose.
- Medir o ângulo de rotação durante a inversão da sacarose para uma mistura equimolar de glicose e frutose.

UE404030

09/08 JS

FUNDAMENTOS GERAIS

Designa-se como atividade ótica a rotação do nível de polarização de uma luz polarizada linearmente quando atravessa por certa substância. Esta rotação aparece em soluções de moléculas quirais como, por exemplo, soluções de açúcar e em certos objetos como quartzo. Fala-se de substâncias que viram para a direita, quando o nível da polarização for refletido na direção do espectro de luz com tendência para direita e em outros casos por substâncias com tendências de virar à esquerda. As soluções de glicose e sacarose são substâncias que viram para a direita e a solução de frutose são as que viram para a esquerda.

O ângulo α , sob qual é girado o nível de polarização, depende da substância liberada e é proporcional á concentração de massa c e ao comprimento d da amostra. Escreve-se

(1)
$$\alpha = [\alpha] \cdot c \cdot d$$

e descreve-se $[\alpha]$ como um ângulo de rotação específico da substância.

O ângulo de rotação especifica depende, na fórmula,

(2)
$$\left[\alpha\right] = \frac{k(T)}{\lambda^2}$$

do comprimento de onde λ , da luz e da temperatura T da amostra. Ele é demonstrado em valores tabelares para a luz amarelada do Sódio e a uma temperatura de 25°C. Se for conhecido, pode-se determinar a concentração da solução através da medição do ângulo de rotação em um polarímetro.

Em um experimento, diferentes soluções de açúcar são examinadas em um polarímetro e os seus ângulos de rotação comparados. Para isto a luz pode ser escolhida de quatro diferentes cores de LED. Além disso, uma solução de açúcar comum (sacarose) é separada lentamente, através da adição de ácido clorídrico, em uma reação de estrutura anelada dupla e transformada em uma mistura equimolar de glicose e frutose. Com isto a direção de rotação é invertida da direita para a esquerda, uma vez que o ângulo de rotação, após o término da reação é a soma dos ângulos de rotação

da glicose para a direita e da frutose virando fortemente para a esquerda.

Fig. 1: Arranjo de medição

LISTA DE APARELHOS

1	Polarímetro com 4 LED	U8761161
1 1	ciiiiai o de iiiedi şao, i oo iiii	U14205 U14210
1	Balança eletrônica Scout Pro 200 g	U42048

Exigência complementar:

Açúcar de frutas (Frutose), 500g Açúcar de uva (Glicose), 500 g Açúcar de cana (Sacarose), 500 g

Ácido clorídrico, técnico

INDICAÇÃO PARA A DETERMINAÇÃO DO ÂNGULO DE ROTAÇÃO

Observa-se na câmara de medição vazia, através da abertura de observação do analisador a luminosidade mínima para todas as cores, quando o ponteiro indica 360°.

Uma substância que vira na câmara de medição para a direita, vira o plano de polarização — observada desde acima — no sentido do ponteiro do relógio. Se agora o disco do analisador também é virado no sentido horário — partindo de 360° — para alcançar novamente a luminosidade mínima, é assim que o ponteiro indica depois sobre um ângulo $\alpha_{\rm p}$ < 360°. O ângulo de rotação buscado é

$$\alpha = 360^{\circ} - \alpha_P$$

Correspondentemente, o disco do analisador tem que ser girado em sentido anti-horário, quando a substância é de virar à esquerda para o estabelecimento da luminosidade mínima. O ângulo de rotação buscado é.

$$\alpha = -\alpha_P$$

A luminosidade mínima que pode ser obtida pela rotação do disco do analisador não é definida nitidamente, porque a luz do LED do polarímetro não tem pureza espectral e por pertencer a ângulos de rotação facilmente distinguíveis para cada comprimento de onda de um espectro LED. Por isso pode-se observar no lugar da luminosidade mínima, ao olhar mais minuciosamente, uma ligeira mudança de cor, quando se gira o disco do analisador para cá e para lá, em volta da posição ótima.

MONTAGEM

 Ligar o polarímetro através da fonte de alimentação a rede elétrica

EXECUÇÃO

Ângulo de rotação em dependência do comprimento da amostra:

- Dissolver por revolvimento 50 g de açúcar de fruta (frutose) em 100 ml de água destilada.
- Retirar o cilindro de medição da câmara de medição e encher com 10 ml da solução de frutose (10 ml equivalem ao comprimento de amostra d = 19 mm).
- Secar o lado externo do cilindro de medição, colocar o cilindro de medição dentro da câmara de medição, sem que chegue líquido dentro da câmara de medição.
- Através de deslocação de o comutador escolher o LED vermelho.
- Montar o disco do analisador, observar o ponto luminoso do LED através da abertura de observação do analisador e girar o analisador até que a luminosidade chega a um mínimo.
- Anotar o ângulo de rotação α inclusive o signo de direção na Tab. 1.

- Sucessivamente ligar a luz amarela, verde e azul e determinar a cada vez o ângulo de rotação α inclusive o signo de direção e anotar na Tab. 1.
- Sempre de novo retirar o cilindro de medição da câmara de medição, encher com outros 10 ml da solução de frutose e colocar o cilindro de medição na câmara de medição, sem que chegue líquido dentro da câmara de medição.
- A cada vez determinar o ângulo de rotação α para as quatro cores inclusive o signo de direção e anotar.

Ângulo de rotação em dependência da concentração de massa:

- Num copo de vidro dissolver por revolvimento 10 g de açúcar de fruta (frutose) em 200 ml de água destilada.
- Retirar o cilindro de medição da câmara de medição e encher com 100 ml da solução de frutose e colocar o cilindro de medição dentro da câmara de medição, sem que chegue líquido dentro da câmara de medição.
- A cada vez determinar o ângulo de rotação α para as quatro cores inclusive o signo de direção e anotar na Tab. 2.
- Sempre de novo retirar o cilindro de medição da câmara de medição, despejar de volta a solução de frutose no copo de vidro e dissolver outros 10 g de acúcar de frutas.
- Encher o cilindro de medição com 100 ml da nova solução de frutose e colocar o cilindro de medição dentro da câmara de medição, sem que chegue líquido dentro da câmara de medição.
- A cada vez determinar o ângulo de rotação α para as quatro cores inclusive o signo de direção e anotar na Tab. 2.

Comparação da direção de rotação e do ângulo de rotação da frutose, glicose e sacarose:

- Selecionar o LED amarelo.
- Dissolver por revolvimento 35 g de açúcar de uva (glicose) em 100 ml de água destilada.
- Retirar o cilindro de medição da câmara de medição, encher com 50 ml da solução de glicose e colocar o cilindro de medição dentro da câmara de medição, sem que chegue líquido dentro da câmara de medição (50 ml equivalem ao comprimento de amostra d = 95 mm).
- Montar o disco do analisador, observar o ponto luminoso do LED através da abertura de observação do analisador e girar o analisador até que a luminosidade chega a um mínimo.
- Determinar o ângulo de rotação α inclusive o signo de direção e anotar na Tab. 3.
- Dissolver por revolvimento 30 g de açúcar de cana (sacarose) em 100 ml de água destilada.
- Despejar a solução no cilindro de medição.
- Determinar o ângulo de rotação α inclusive o signo de direção e anotar na Tab. 3.
- Anotar também os já determinados valores de medição na Tab. 3.

Medição do ângulo de rotação durante a inversão da sacarose.

- Selecionar o LED amarelo.
- Retirar o cilindro de medição com a solução de sacarose da câmara de medição.
- Adicionar um pouco de ácido clorídrico, revolver e aquecer a solução num banho de água de aproximadamente 50°C.
- Colocar de novo o cilindro de medição dentro da câmara de medição, sem que chegue líquido dentro da câmara de medição.
- Determinar o ângulo de rotação α inclusive o signo de direção e anotar na Tab.4.
- Determinação do ângulo de rotação, inclusive o signo de direção em intervalos de 2-3 minutos e mais tarde em intervalo maior e anotar o resultado na Tab.4.

EXEMPLO DE MEDIÇÃO

Ângulo de rotação em dependência do comprimento da amostra:

Tab. 1: Ângulo de rotação α da frutose em dependência do comprimento da amostra d para quatro comprimentos de onda diferentes.

Concentração de massa: c = 0,48 g/cm³ (50 g frutose sobre 105 ml de água)

	α					
<i>d</i> / mm	Vermelho (630 nm)	Amarelo (580 nm)	Verde (525 nm)	Azul (468 nm)		
19	-6°	-7,5°	-10°	-11,5°		
38	38 -15° -16°		-20°	-23,5°		
57	57 -20° -25°		-33°	-42°		
76	76 -30° -32°		-40,5°	-53°		
95	95 -39,5° -4		-53°	-68°		
114	-42°	-49,5°	-61°	-78°		
133	133 -55° -58°		-70°	-90°		
152	152 -61°		-88°	-103°		
171	171 -71° -80°		-98°	-123°		
190	-74°	-83°	-103°	-128°		

Indicação: As séries de medição da Tab. 1 e Tab. 2 foram obtidas de açúcares de frutas com purezas diferentes.

Ângulo de rotação em dependência da concentração de massa:

Tab. 2: Ângulo de rotação α em dependência da concentração de massa para quatro comprimentos de onda.

Comprimento da amostra d = 190 mm, Volume V = 100 ml

	<i>m </i> g	c / mg/cm³	α				
			Vermelho (630 nm)	Amarelo (580 nm)	Verde (525 nm)	Azul (468 nm)	
	10	50	-7°	-8°	-9°	-10°	
	20	100	-14°	-16°	-19°	-24°	
	30	150	-21°	-24°	-30°	-36°	
	40	200	-27°	-32°	-37°	-43°	
	50	250	-34°	-37°	-45°	-56°	
	60	300	-41°	-45°	-53°	-72°	
	70	350	-47°	-52°	-62°	-73°	

Comparação da direção de rotação e do ângulo de rotação da frutose, glicose e sacarose:

Tab. 3: Ângulo de rotação α da frutose, glicose e sacarose (LED amarelo)

	<i>m /</i> g	V / ml	c / mg/cm³	h / mm	α	[α] / grd cm²/g
Frutose	50	105	480	190	-83°	-9,2
Glicose	35	100	350	95	26°	7,8
Sacarose	30	100	300	190	32°	5,6

Medição do ângulo de rotação durante a inversão da sacarose:

Tab. 4: Ângulo de rotação α em dependência do tempo t durante a inversão da sacarose (LED amarelo)

t / min	α	t / min	α
0,0	33°	20,0	-3°
2,0	23°	24,0	-6°
5,0	16°	27,5	-5°
8,0	9°	33,0	-8°
10,0	6°	42,0	-8°
12,0	3°	45,0	-9°
14,5	-2°	50,0	-9°
16,0	-4°		

ANÁLISE

Ângulo de rotação em dependência do comprimento da amostra:

Fig. 2 mostra um diagrama com os valores de medição da Tab. 1. Estes concordam na moldura de precisão da medição com as retas de origem desenhadas. A concordância confirma a proporcionalidade descrita na equação 1 entre o ângulo de rotação α e o comprimento da amostra d de uma solução oticamente ativa.

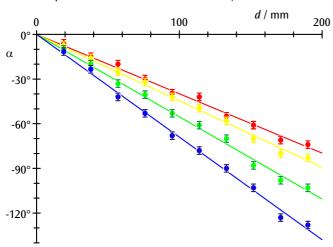


Fig. 2: Ângulo de rotação de uma solução de frutose (c = 0,48 g/cm³) dependente do comprimento da amostra para quatro comprimentos de onda diferentes.

Ângulo de rotação específico em dependência do comprimento da amostra:

Como a concentração de massa da amostra é conhecida, pode-se determinar segundo a equação 1 a rotação especifica $[\alpha]$ para os quatro comprimentos de onda do polarímetro, a partir da subida da reta de origem mostrada na Fig. 2.

O resultado esta representado na Tab. 5 assim como na Fig. 3. A curva aí desenhada foi calculada segunda a equação 2.

$$k(T) = -3.2 \cdot 10^9 \frac{\text{grd}}{\text{g}}$$

Tab. 5: Ângulo de rotação específico em dependência do comprimento da amostra

λ/ nm	630	580	525	468
$\left[lpha ight] / \ m grd \ cm^2/g$	-8,4	-9,4	-11,6	-14,5

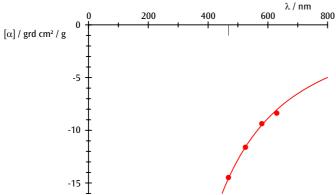


Fig. 3: Ângulo de rotação específico em dependência do comprimento da amostra

Ângulo de rotação em dependência da concentração de massa:

Fig. 4 mostra um diagrama com os valores de medição Tab. 2. Estes concordam na moldura de precisão da medição com as retas de origem desenhadas. A concordância confirma a proporcionalidade descrita na equação 1 entre o ângulo de rotação α e a concentração de massa c de uma solução oticamente ativa.



Fig. 4: Ângulo de rotação de uma solução de frutose em dependência da concentração de massa para quatro comprimentos de onda de luz diferentes

Comparação da direção de rotação e do ângulo de rotação da frutose, glicose e sacarose:

Na Tab. 3 é calculado, a partir dos valores de medição por meio da utilização da equação 1, o ângulo de rotação específico das três soluções de açúcar analisadas. Mostra-se que as diferentes soluções de açúcar se diferenciam tanto no valor como também no signo da direção do ângulo de rotação.

Medição do ângulo de rotação durante a inversão da sacarose:

Fig. 5 mostra uma representação gráfica dos valores de medição da Tab. 4. A inversão da direção de rotação da direita para a esquerda acontece em aproximadamente 15 minutos.

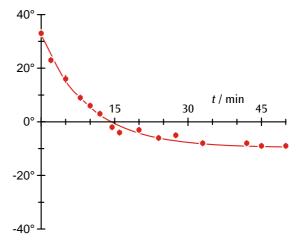


Fig. 5: Ângulo de rotação para a luz amarela de uma solução de sacarose (c = 0,3 g/cm³, d = 190 mm) durante a inversão em dependência do tempo