

Lei de Malus

CONFIRMAÇÃO DA LEI DE MALUS PARA LUZ POLARIZADA LINEARMENTE.

- Medição da intensidade da luz / transmitida pelos filtros de polarização em dependência do ângulo de rotação dos filtros.
- Confirmação da lei de Malus.

UE4040100 11/23 UD

Fig. 1: Disposição de medição

FUNDAMENTOS GERAIS

A luz pode ser polarizada como onda transversal, por exemplo, fazendo-a passar por um filtro de polarização. Em uma onda de luz polarizada linearmente, o campo elétrico *E* e o campo magnético *B* oscilam respectivamente em um plano fixo. A direção da oscilação do campo elétrico é denominada a direção de polarização.

Na experiência, a luz atinge sucessivamente um polarizado e um analisador, que estão deslocados um em relação ao outro pelo ângulo ϕ . O polarizador é somente transpassado por uma parte polarizada linearmente da luz. Sua intensidade de campo tem, digamos, a amplitude E_0 .

Na direção da polarização do analisador, o componente oscila com a amplitude

(1)
$$E = E_0 \cdot \cos \varphi$$
.

Somente esta consegue passar pelo analisador (Fig. 3).

A intensidade da luz corresponde ao quadrado da intensidade do campo elétrico. Por isto, a intensidade após o analisador é de

(2)
$$I = I_0 \cdot \cos^2 \varphi ,$$

se lo for a intensidade atrás do polarizador.

A equação (2) é conhecida como a lei de Malus. Ela é confirmada na experiência pela medição da intensidade com um sensor de luz. Nesta medição, o valor de intensidade medido com ϕ = 90° corresponde à luz ambiente. Este valor é subtraído da intensidade medida.

Fig. 2: Representação da definição da direção de polarização

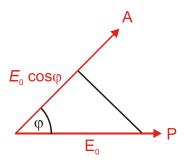


Fig. 3: Representação para o cálculo da intensidade de campo elétrico atrás do analisador

LISTA DE APARELHOS

1	Banco óptico D, 50 cm		U10302	1002630
4	Cavalete óptico D, 90/50		U103111	1002635
1	Luminária óptica com lâmpad			
			U21882	1020630
2	Filtro de polarização sobre ha	ste	U22017	1008668
1	Suporte para sensor de luz			1022269
1	Sensor de luz, três faixas	UCM	A-BT50i	1021502
1	Cabo de sensor	UCM	A-BTsc1	1021514
1	Data logger			

1 Software

Mais informações sobre a medição digital podem ser encontradas no site do experimento na loja virtual da 3B.

MONTAGEM E EXECUÇÃO

• Realizar a disposição de medição conforme Fig. 1.

Orientação:

A posição exata dos dois filtros de polarização no banco óptico não é crítica em relação ao resultado da medição.

- Conectar o sensor de luz com auxílio do cabo de sensor ao data logger e ligar o software.
- Trazer ambos os filtros de polarização, com auxílio da marcação do suporte giratório para a posição 0 da escala angular.

Orientação:

O filtro de polarização mais próximo da luminária óptica serve como polarizador, o filtro de polarização mais próximo do sensor de luz, como analisador.

- Não alterar mais o ajuste do polarizador.
- Ajustar o analisador em intervalos de 10° para ângulos de até 360°, inclusive, e, a cada ângulo ajustado, registrar a intensidade da luz ponto a ponto (Tab. 1).

EXEMPLO DE MEDIÇÃO

Tab. 1: Intensidade medida da luz I_m e intensidade da luz I corrigida pela intensidade da luz ambiente para diferentes ângulos φ entre polarizador e analisador

φ	I _m / lux	$I = I_{\rm m} - I_{\rm m}(90^{\circ}) / \text{lux}$
0°	4,0440	3,6705
10°	3,9050	3,5315
20°	3,5500	3,1765
30°	3,1210	2,7475
40°	2,4720	2,0985
50°	1,7910	1,4175
60°	1,2080	0,8345
70°	0,7581	0,3846
80°	0,4502	0,0767
90°	0,3735	0,0000
100°	0,4906	0,1171
110°	0,8805	0,5070
120°	1,3440	0,9705
130°	1,9340	1,5605
140°	2,7330	2,3595
150°	3,3640	2,9905
160°	3,7710	3,3975
170°	4,0140	3,6405
180°	4,0320	3,6585
190°	3,8410	3,4675
200°	3,3710	2,9975
210°	2,7950	2,4215
220°	2,1880	1,8145
230°	1,5000	1,1265
240°	0,9986	0,6251
250°	0,5849	0,2114
260°	0,3802	0,0067
270°	0,3653	-0,0082
280°	0,5882	0,2147
290°	0,9939	0,6204
300°	1,5770	1,2035
310°	2,2280	1,8545
320°	2,8030	2,4295
330°	3,3850	3,0115
340°	3,7280	3,3545
350°	3,9810	3,6075
360°	4,0360	3,6625

AVALIAÇÃO

A anulação dos filtros de polarização é especificada em > 99,9% com λ = 450 – 750 nm. Portanto, o valor de intensidade medido com ϕ = 90° corresponde, em aproximação muito boa, à luz ambiente.

- Das intensidades de luz I_m medidas na Tab. 1, para cada ângulo φ, subtrair a intensidade da luz I_m(φ = 90°) (Tab. 1).
- Representar graficamente a intensidade da luz corrigida pela luz ambiente *I* em dependência do ângulo φ em um diagrama (Fig. 4).

O decurso da curva corresponde à equação (2).

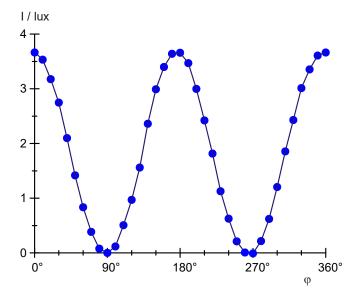


Fig. 4: Intensidade da luz *I* em dependência do ângulo φ entre polarizador e analisador.

A partir dos ângulos φ para 0 ≤ φ ≤ 90°, calcular os valores cos²(φ) (Tab. 2) e transferir os valores correspondentes para a intensidade da luz / da Tab. 1 para a Tab. 2.

Tab. 2: Intensidade da luz corrigida pela intensidade da luz ambiente I para diferentes valores de $\cos^2(\varphi)$ para $0 \le \varphi \le 90^\circ$

φ	cos²(φ)	//lux
0°	1,00	3,6705
10°	0,97	3,5315
20°	0,88	3,1765
30°	0,75	2,7475
40°	0,59	2,0985
50°	0,41	1,4175
60°	0,25	0,8345
70°	0,12	0,3846
80°	0,03	0,0767
90°	0,00	0,0000

• Representar graficamente a intensidade da luz I em dependência de $\cos^2 \varphi$ em um diagrama (Fig. 5)

Os valores de medição estão, conforme aguardado por conta da equação (2), em uma reta de origem com a inclinação l_0 .

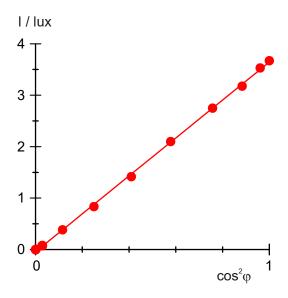


Fig. 5: Intensidade da luz *l* em dependência de cos²φ